Target: I can write electron configurations in a short hand style, and can write configurations for ions.

N 13 – Noble Gas Configurations and Configurations of lons

Link to YouTube Presentation: https://youtu.be/0ArsAlYrWiM

N 13 – Noble Gas Configurations and Configurations of lons

Noble Gases

Have a full "valence shell" – meaning their outer <u>s and p orbitals</u> are full! "8 is great!"

- Makes them very stable
- They don't react with other things
- They are "inert"

Noble Gases – Examples of Full Shells

- <u>He</u>: 1s²
- <u>Ne</u>: 1s² 2s² 2p⁶
- <u>Ar</u>: 1s²2s²2p⁶ 3s² 3p⁶
- <u>Kr</u>: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶
- <u>Xe</u>: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶

Finding Noble Gas Configuration

<u>A short cut method of writing configurations</u>

- Since noble gases are "special" reference all configurations against the <u>PREVIOUS</u> noble gas
 - **1**. Find the previous noble gas
 - 2. Write that noble gas in brackets []
 - List any remaining electron configuration left over until you get to the element you are trying to write

Noble Gas Configurations!

Configurations of lons

<u>lon</u>

- An atom with a charge
- Has a change to it's normal # of electrons
 (normally #protons = #electrons → neutral, no charge)

Why make ions???

Atoms want to "look" like a noble gas!!! They want to achieve more **STABILITY**! They want a full s and p orbital set!

Making lons

<u>Cation</u>	<u>Anion</u>
Lost e-	Gained e-
p+ > e-	<i>p</i> + < <i>e</i> -
+++ >	+++ <
+ Charge	- Charge

How do you know how many electrons to loose or gain? Look for the <u>CLOSEST</u> noble gas! Adjust your # of electrons until you are at the closest one.

Finding the Closest Noble Gas

<u>Lithium</u>	<u>Calcium</u>	<u>Phosphorus</u>
3 e-	20 e-	15 e-
He = 2 e-	Ar = 18 e-	Ne = 10 e-
Ne = 10 e-	Kr = 36 e-	Ar = 18 e-
Helium is closer!	Argon is closer!	Argon is closer!
Lose 1 e- to look like Helium	Lose 2 e- to look like Argon	Gain 3 e- to look like Argon
Li+	Ca ²⁺	P ³⁻

Which electrons are you removing when making cations? **Always remove highest ENERGY LEVEL electrons first!** We do not REMOVE electrons from orbitals in the same order that we filled the orbitals! Once orbitals have electrons in them, their energy levels shift around **BE CAREFUL with** d-block and f-block elements!

Configuration of Ions - Examples

Li⁺: 1s²

<u>Li</u>: 1s² 2s¹

Now it looks just like Helium doesn't it! Highest Energy Level Electrons – 2 is highest! LOSE THAT ELECTRON FIRST!

Configuration of Ions - Examples

<u>Ca</u>: 1s²2s²2p⁶ 3s² 3p⁶ 4s²

Highest Energy Level Electrons – 4 is highest! LOSE THOSE ELECTRONS FIRST!

1s²2s²2p⁶ 3s²3p⁶ **Ca**²⁺:

Now it looks just like Argon doesn't it!

Configuration of Ions – d-block

d-block elements are called "transition metals." They can make several different charges.

CAREFUL!!!

<u>Cu</u>: 1s²2s²2p⁶ 3s² 3p⁶ 4s² 3d⁹

<u>Cu</u>⁺: $1s^22s^22p^6 3s^23p^6 4s^1 3d^9$

Highest Energy Level Electrons – 4 is highest! LOSE THOSE ELECTRONS FIRST!

Configuration of Ions – d-block

d-block elements are called "transition metals." They can make several different charges.

<u>Cu</u>: 1s²2s²2p⁶ 3s² 3p⁶ 4s² 3d⁹

<u>Cu²⁺</u>: 1s²2s²2p⁶ 3s² <u>3p⁶ 3d⁹</u> CAREFUL!!! Highest Energy Level Electrons – 4 is highest! LOSE THOSE ELECTRONS FIRST!

Configuration of lons

No matter what, take electrons from the highest energy level orbitals!

- Take from highest p,
- Then highest s,
- Then come back and do lower d if needed

Configuration of lons

Ga: 1s²2s²2p⁶ 3s² 3p⁶ 4s² 3d¹⁰4p¹

<u>Ga+</u>: 1s²2s²2p⁶ 3s² 3p⁶ 4s² 3d¹⁰

<u>Ga²⁺</u>: 1s²2s²2p⁶ 3s² 3p⁶ 4s¹ 3d¹⁰

<u>Ga³⁺</u>: 1s²2s²2p⁶ 3s² <u>3p⁶ 3d¹⁰</u>

<u>Ga4+</u>: 1s²2s²2p⁶ 3s² <u>3p⁶ 3d⁹</u>

Take last 4s

Take 4p first

Take 4s next

THEN you can take 3d !

YouTube Link to Presentation

https://youtu.be/0ArsAlYrWiM